Discovering routine behaviour from time series data

Raúl Montoliu

Knowledge-Based Systems

Volume 113, 1 December 2016, Pages 61-74

An incremental algorithm for discovering routine behaviours from smart meter data

]in Wang 🝳 🖾 , Rachel Cardell-Oliver, Wei Liu

Show more 🗸

+ Add to Mendeley 😪 Share 🍠 Cite

https://doi.org/10.1016/j.knosys.2016.09.016 7

Get rights and content 7

https://doi.org/10.1016/j.knosys.2016.09.016

A research paper **excellent** written and presented

The Problem

The problem of discovering routines is to find all frequently occurring subsequences of variable lengths in a smart meter time series.

The Problem

The problem of discovering routines is to find all frequently occurring subsequences of variable lengths in a smart meter time series.

Challenges

- 1. We are interested in the **shape** and in the **values** of subsequences.
- 2. There is no prior knowledge about the **length** of the subsequences.
- 3. The subsequences usually consist of only a **few** elements.

The paper presents

- 1. **Brute force** algorithm to detect routines
- 2. Novel algorithm to efficiently discover all routines of variable length

Pd-2 .-9-2-3-64-2 - .) 2 + 1 S1 + 1 (1 9-4 () 6 6 () () (=)-#) 5-+-E + - 1 -- ()++6 + + 7-0-4 20 +

Definition 1. <u>Smart Meter Time Series</u>: A time series $X = (x_1, x_2, ..., x_n)$ is a sequence of *n* real valued numbers ordered in time.

Definition 2. <u>Subsequence:</u> Given a time series X of length n, a subsequence S is a subset of m consecutive observations from X, i.e., $S_p^m = (x_p, \dots, x_{p+m-1})$, where $1 \le p \le n - m + 1$, and m < n.

Definition 3. *Magnitude*: Given a subsequence S_p^m of length *m*, the magnitude of S_p^m is the maximum of all the elements in the subsequence, i.e.,

$$Mag(S_p^m) = \max_{1 \le t \le m} (x_t),$$

Definition 3. *Magnitude*: Given a subsequence S_p^m of length *m*, the magnitude of S_p^m is the maximum of all the elements in the subsequence, i.e.,

$$Mag(S_p^m) = \max_{1 \le t \le m} (x_t),$$

Definition 4. *Match*: Given two subsequences, S_i^m and S_j^m , with the same length of *m* from *X*, if the distance between the two subsequences is no greater than a threshold *R*, i.e., $Dist(S_i^m, S_j^m) \le R$, then the two subsequences are *matched*.

Definition 6. Distance: Given two subsequences, S_i^m and S_i^m , of the same length m, the distance between S_i^m and S_i^m is the maximum element-wise difference between S_i^m and S_i^m , i.e., $Dist(S_i^m, S_j^m) = \max_{0 < t < m-1}(|x_{i+t} - x_{j+t}|)$ Distance == 5 2 - 2 5 - 4 8 - 5 3 - 6 2 - 5 3 - 8 5 - 3 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 3 28

Definition 7. *Motif*: Given a time series *X*, a subsequence length *m*, and a distance threshold *R*, the most significant motif is the subsequence of length *m* that has most number of matched occurrences under the distance threshold, i.e., $\forall i, j : Dist(S_i^m, S_j^m) \le R$.

Definition 7. <u>Motif</u>: Given a time series X, a subsequence length m, and a distance threshold R, the most significant motif is the subsequence of length m that has most number of matched occurrences under the distance threshold, i.e., $\forall i, j : Dist(S_i^m, S_i^m) \le R$.

Definition 7. *Motif*: Given a time series *X*, a subsequence length *m*, and a distance threshold *R*, the most significant motif is the subsequence of length *m* that has most number of matched occurrences under the distance threshold, i.e., $\forall i, j : Dist(S_i^m, S_i^m) \le R$.

Definition 7. *Motif*: Given a time series *X*, a subsequence length *m*, and a distance threshold *R*, the most significant motif is the subsequence of length *m* that has most number of matched occurrences under the distance threshold, i.e., $\forall i, j : Dist(S_i^m, S_i^m) \leq R$.

Definition 7. *Motif*: Given a time series *X*, a subsequence length *m*, and a distance threshold *R*, the most significant motif is the subsequence of length *m* that has most number of matched occurrences under the distance threshold, i.e., $\forall i, j : Dist(S_i^m, S_i^m) \le R$.

m=3, R=1

Definition 8. *Routine*: Given a frequency threshold *C* and a magnitude threshold *G*, a routine is a motif that has at least *C* matched occurrences in the time series, each of which has at least *G* magnitude.

Definition 8. *Routine*: Given a frequency threshold *C* and a magnitude threshold *G*, a routine is a motif that has at least *C* matched occurrences in the time series, each of which has at least *G* magnitude.

Definition 8. *Routine*: Given a frequency threshold *C* and a magnitude threshold *G*, a routine is a motif that has at least *C* matched occurrences in the time series, each of which has at least *G* magnitude.

It is **not** a routine with C = 3 and G = 7

The routine discovery problem is to find all routines with lengths 1 to m that occur in a smart meter time series X given a magnitude threshold G and frequency threshold C.

	-

for m in [m_{min}, m_{max}]

Algorithm 1: Discovering Routine of Fixed Length (DRFL).			
Input : a time series of length <i>n</i>			
Parameters : routine length <i>m</i> , distance threshold <i>R</i> ;			
frequency threshold C, magnitude threshold G,			
overlap parameter ϵ			
Output : m -length routines B^m			
1 for $i = 1$ to $n - m - 1$ do			
2 extract subsequence S_i^m ;			
$B^m \leftarrow \text{SubGroup}(S^m, R, C, G)$; // See Algorithm 2			
4 for $i = 1$ to $ B^m - 1$ do			
5 for $j = i$ to $ B^m $ do			
// See Algorithm 3			
$6 \left[\begin{array}{c} K_i, K_j \leftarrow \texttt{OLTest}(\texttt{Inst}(B_i^m), \texttt{Inst}(B_j^m), \epsilon) \end{array} \right];$			
7 for $i = 1$ to $ B^m $ do			
s if $K_i = FALSE$ then remove B_i^m ;			

Algorithm 1: Discovering Routine of Fixed Length (DRFL). : a time series of length n Input **Parameters**: routine length *m*, distance threshold *R*; frequency threshold C, magnitude threshold G, overlap parameter ϵ : *m*-length routines B^m Output 1 **for** i = 1 **to** n - m - 1 **do** 2 extract subsequence S_i^m ; **3** $B^m \leftarrow \text{SubGroup}(S^m, R, C, G)$; // See Algorithm 2 **4 for** i = 1 **to** $|B^m| - 1$ **do** 5 | for j = i to $|B^m|$ do 6 // See Algorithm 3 $K_i, K_j \leftarrow \text{OLTest}(\text{Inst}(B_i^m), \text{Inst}(B_j^m), \epsilon);$ **7** for i = 1 to $|B^m|$ do **s if** $K_i = = FALSE$ **then** remove B_i^m ;

1 **for** i = 1 **to** n - m - 1 **do** 2 extract subsequence S_i^m ;

1 **for** i = 1 **to** n - m - 1 **do** 2 extract subsequence S_i^m ;

1 **for** i = 1 **to** n - m - 1 **do** 2 extract subsequence S_i^m ;

m = 3

Algorithm 1: Discovering Routine of Fixed Length (DRFL).				
Input : a time series of length <i>n</i>				
Parameters : routine length <i>m</i> , distance threshold <i>R</i> ;				
frequency threshold C, magnitude threshold G,				
overlap parameter ϵ				
Output : m -length routines B^m				
1 for $i = 1$ to $n - m - 1$ do				
2 extract subsequence S_i^m ;				
$3 B^m \leftarrow \mathrm{SubGroup}(S^m, R, C, G)$; // See Algorithm 2				
4 for $i = 1$ to $ B^m - 1$ do				
5 for $j = i$ to $ B^m $ do	Overlapping			
// See Algorithm 3	orenapping			
$6 \left[\begin{array}{c} K_i, K_j \leftarrow OLTest(Inst(B_i^m), Inst(B_j^m), \epsilon) \end{array} \right];$	clusters			
7 for $i = 1$ to $ B^m $ do				
8 if $K_i = FALSE$ then remove B_i^m ;				

m = 3, R = 2, G = 5, C = 4

m = 3, R = 2, G = 5, C = 4

m = 5, R = 2, G = 5, C = 3

segments of subsequences

matched shorter segments

Experiments on synthetic database

(a) Different sequence lengths.

(b) Different numbers of subsequence instances

Experiments on real datasets

- 1. More than one dataset
- 2. A state of the art method is used to comparisons

This paper is interesting for **us** because...

