Discovering routine behaviour from time series data

Raúl Montoliu

Knowledge-Based Systems

Volume 113, 1 December 2016, Pages 61-74

An incremental algorithm for discovering routine behaviours from smart meter data

Jin Wang Q & , Rachel Cardell-Oliver, Wei Liu

Show more V

+ Add to Mendeley of Share 55 Cite

https://doi.org/10.1016/j.knosys.2016.09.016 7

Get rights and content 7

https://doi.org/10.1016/j.knosys.2016.09.016

A research paper **excellent** written and presented

The Problem

The problem of discovering routines is **to find all frequently occurring subsequences of variable lengths** in a smart meter time series.

The Problem

The problem of discovering routines is **to find all frequently occurring subsequences of variable lengths** in a smart meter time series.

Challenges

- 1. We are interested in the **shape** and in the **values** of subsequences.
- 2. There is no prior knowledge about the **length** of the subsequences.
- 3. The subsequences usually consist of only a **few** elements.

The paper presents

- 1. **Brute force** algorithm to detect routines
- 2. **Novel** algorithm to efficiently discover all routines of variable length

A $Pd - 2 0 - 2 - 3 - 64 - 2 - \cdot$ $2 + 1$ $5: + 7$ $(1.9 - 4)$ $() 6 6 () () (=)-#)$ $5 - +$ $E +$ $-1 - \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2}$ $+$ $+$ $7 - 0 - 4$ $20 +$

Definition 1. Smart Meter Time Series: A time series $X =$ (x_1, x_2, \ldots, x_n) is a sequence of *n* real valued numbers ordered in time.

Definition 2. Subsequence: Given a time series X of length n , a subsequence S is a subset of m consecutive observations from X , i.e., $S_p^m = (x_p, ..., x_{p+m-1})$, where $1 \le p \le n-m+1$, and $m < n$.

Definition 3. Magnitude: Given a subsequence S_p^m of length m, the magnitude of S_p^m is the maximum of all the elements in the subsequence, i.e.,

$$
Mag(S_p^m) = \max_{1 \leq t \leq m} (x_t),
$$

Definition 3. Magnitude: Given a subsequence S_p^m of length m, the magnitude of S_p^m is the maximum of all the elements in the subsequence, i.e.,

$$
Mag(S_p^m) = \max_{1 \leq t \leq m} (x_t),
$$

Definition 4. *Match*: Given two subsequences, S_i^m and S_i^m , with the same length of m from X , if the distance between the two subsequences is no greater than a threshold *R*, i.e., *Dist*(S_i^m , S_j^m) \leq *R*, then the two subsequences are matched.

Definition 6. Distance: Given two subsequences, S_i^m and S_i^m , of the same length m, the distance between S_i^m and S_i^m is the maximum element-wise difference between S_i^m and S_i^m , i.e., $Dist(S_i^m, S_j^m) = \max_{0 \le t \le m-1}(|x_{i+t} - x_{j+t}|)$ Distance == 5 $2 - 2$ $5 - 4$ 8 - 5 $3 - 6$ $2 - 5$ **3 - 8** 5 - 322 23 24 25 26 27 9 10 11 12 13 14 15 16 17 18 19 20 21 28

m=3, R=1

Definition 8. Routine: Given a frequency threshold C and a magnitude threshold G, a routine is a motif that has at least C matched occurrences in the time series, each of which has at least G magnitude.

Definition 8. Routine: Given a frequency threshold C and a magnitude threshold G, a routine is a motif that has at least C matched occurrences in the time series, each of which has at least G magnitude.

Definition 8. Routine: Given a frequency threshold C and a magnitude threshold G, a routine is a motif that has at least C matched occurrences in the time series, each of which has at least G magnitude.

It is not a routine with C = 3 and G = 7

The routine discovery problem is to find all routines with lengths 1 to m that occur in a smart meter time series X given a magnitude threshold G and frequency threshold C.

for m in $[m_{min}, m_{max}]$

Algorithm 1: Discovering Routine of Fixed Length (DRFL). **Input** : a time series of length n **Parameters:** routine length m, distance threshold R; frequency threshold C, magnitude threshold G, overlap parameter ϵ **Output** : *m*-length routines B^m 1 for $i = 1$ to $n - m - 1$ do 2 extract subsequence S_i^m ; $B^m \leftarrow SubGroup(S^m, R, C, G)$; // See Algorithm 2 4 for $i = 1$ to $|B^m| - 1$ do 5 | for $j = i$ to $|B^m|$ do 6 $\begin{bmatrix} // See Algorithm 3 \\ K_i, K_j \leftarrow 0LTest(Inst(B_i^m), Inst(B_j^m), \epsilon) ; \end{bmatrix}$ 7 for $i = 1$ to $|B^m|$ do **8** | **if** $K_i = -FALSE$ **then** remove B_i^m ;

Algorithm 1: Discovering Routine of Fixed Length (DRFL). **Input** : a time series of length n **Parameters:** routine length m, distance threshold R; frequency threshold C, magnitude threshold G, overlap parameter ϵ : m-length routines B^m Output **1 for** $i = 1$ **to** $n - m - 1$ **do**
2 extract subsequence S_i^m ; \overline{B} \overline{B} \leftarrow SubGroup (S ^m, R, C, G) : // See Algorithm 2 4 for $i = 1$ to $|B^m| - 1$ do 5 | for $j = i$ to $|B^m|$ do 6
 $K_i, K_j \leftarrow \text{OLTest}(\text{Inst}(B_i^m), \text{Inst}(B_j^m), \epsilon)$; 7 for $i = 1$ to $|B^m|$ do **8 if** $K_i = -FALSE$ then remove B_i^m ;

1 for $i = 1$ to $n - m - 1$ do extract subsequence S_i^m ; $\overline{2}$

1 for $i = 1$ to $n - m - 1$ do extract subsequence S_i^m ; $\overline{2}$

1 for $i = 1$ to $n - m - 1$ do extract subsequence S_i^m ; $\overline{2}$

m = 3, R = 2, G = 5, C = 4

m = 3, R = 2, G = 5, C = 4

m = 5, R = 2, G = 5, C = 3

segments of

subsequences

matched shorter segments

Experiments on synthetic database

(a) Different sequence lengths.

(b) Different numbers of subsequence instances

Experiments on real datasets

- 1. More than one dataset
- 2. A state of the art method is used to comparisons

This paper is interesting for **us** because...

